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SUMMARY

The feasibility of using density-dependent birth-death-migration (BDM)
models is demonstrated to analyse data specifically the spread of muskrats
in the Netherlands over the past 35 years. Both single as well as multiple
populations are dealt with. It is shown that density dependent BDM models’
are also available to investigate the properties of metapopulations, such as
the variances, which are not available from deterministic models. The BDM

: models are found to be valuable tools for evaluating pest control strategies
' which might increase the death rate, decrease the birth rate or slow the
migration rate. '

Key words : Density independent models, Logistic models, Cumulant
functions, Single and multiple populations.
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1.__Introduciion

Spatio-temporal, mbde\ls of biological spread may be classified into three
broad categories. A’ common category counsists of the spatial statistical
models [2]. These are empirical models, which are relatively easy to analyze
statistically but which have little or no mechanistic basis. Another common
category consists of the biological simulation models, which typically
incorporate as much of ‘the underlying biological and ecological theory as
possible. Thus these are mechanistic models, usually with numerous pararmeters,
and hence they are difficult to validate statistically due to their complexity. A
third, less common category consists of low-order tractable mathematical
models, which contain a few parameters describing some features of the
underlying ecological mechanism but yet are amenable to statistical analysis.
Diffusion models belong to this third category ({101, [12]) as do also the BDM
models [11].

In light of the conceptual appeal of the BDM models for understanding
and managing biological invasions ([5], [6]), it seems surprising that they have
not been .widely used in the past for this purpose. There has been a general
feeling among modelers that net reproduction and migration could not be
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estimated simultaneously, hence population growth models have usually been
fitted to abundance data from individual locations separately and the BDM
models have been largely ignored. Indeed, we are not aware of any research
that fitted BDM models to the present type of spatio-temporal data prior to
[7]), even though there is a long history in compartmental analysis of using
the more restricted migration- death models for this purpose [4].

This paper should be regarded as a progress report in using BDM models
for the analysis of data. Section 2 describes the data, basic assumptions and
notation of the paper. Sections 3 and S review some density-independent models
previously developed and fitted to the present data in [7]. Sections 4 and 6
develop and apply the new density-dependent models for the analysis.
Concluding remarks including suggestions for future research are given in
Section 7. ) ‘

2. Description of Data Set, Notation, and Basic Assumptions

Data on the annual catch of muskrats in 11 Dutch provinces between 1968
and 1991 are described in Hengeveld [3] and the complete data set is listed
in {7]. Figure 1 illustrates the observed muskrat harvests in the eleven provinces
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Figure 1. Data on muskrat harvest in 11 provinces in the Netherlands during their inital
population growth periods from 1960-1991
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during their respective growth periods. For simplicity, we regard the observed
harvest values as representing actual population sizes.

The model will be developed for only up to two populauons linked by
migration, but the generalization to any arbitrary number of populations follows
easily. Let

1. X;(t), i=1,2; denote muskrat abundance in province i at elapsed time t,
2. X (1) =[X,), X,(0) be the random vector of abundances at time t,

3. Ky (1) denote a joint cumulant of X(t), and
4

- K, (8, 1) be the cumulant generating function (cgf) of X ®.

The cgf is defined as the logarithm of the moment generating function,
and the cumulants are the coefficients in the Taylor series expansion

Ky00= K, , 87632/ v !vy! Q@1
vl,v220

In the standard BDM models, there are four possible types of changes
over time, namely immigration, birth, death and migration, in a population size,
X;(1). The “instantaneous” probabilities of these possible changes in small

intervals of time from ttot+ At are assumed to be independent with :

a. Prob { X; will increase by 1 due to immigration } = L;At,

b. Prob { X; will increase by 1 due to birth } = A; (X))At, 2.2)

c. Prob {X; will decrease by 1 due to death } = y1; (X)At, |

d. Prob {X;will increase by 1 and X; will decréase by 1 due to migration }
=v;X;At fori#j.

The assumption of independent unit changes is not realistic for these large

populations of muskrats. The mean value function is not affected by these

assumptions, however the variances derived for the population size must be
regarded with caution.

The birth and death rate functions are defined as polynomials of the form :
A (X)) = ay X, by X3 and (X)) = ap, X+ by, X3 (2.3)

where the a; >0 denote the “intrinsic™ (per capita) rates and the bIJ 2 0 are
the “crowding” effects. We review in Sections 3 and 5 density independent

models with bij = 0 for all i and j in (2.3).  We then present in Sections 4
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and 6 the logistic models with b;; > 0 and integer's 2 1. The migration- in
all of these models is assumed to be simple, linear (donor-controlled) migration.
' 3 Dens:ty Independenl Models of Growth for a Single Population
31 Assumpnons
Consider the single model population with

AX) = a; X and n(X) = a, X 3.1

_ Such density-independent models could hold only for periods of initial
growth.

3.2 Deterministic model -
The cc’)rresponding' deterministic model is
X(®) = (a,—2,) X+1 ' 3.2)
which has solution
X)) = Xpe, +1(e, - 1)/ (a; — ay) : (3.3)
whére et;—- ékp _((al - az)t H ) ' ] (3.9
3.3 Equations for cumulant functions

The pde for the cgf is, from [6] :

%It(——(a,(e —1)+az(e"°—1)) +I(e -1) 3.5
The equations for the first two cumulants, i.e. mean and variance, are
kl (t)=(al _az)Kl +1- . .7 . ' - (3-6)

3.4 Solutions for cumulant functions

Equation (3.6) has the same form as (3.2), hence the mean value function
K,(#) has the same solution as (3.3). The analytical solution to (3.7) is given

in [5].

3.5 Application 10 muskrat population dynamics

Model (3.3) fits the data from each province well, as given in [7]. For
subsequent comparisons, detailed results will be given for four adjacent
provinces, gelderl, overijl, dr, and gron. The estimated net birth rates,

S .
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a;=a;—ay, Wwith standard errors in. parentheses, are 0365 (0.016),

0296 (0.035), 0.421 (0.055) and 0.258 (0.023)yr, respectively, with
corresponding estimated immigration rates of 92 (16), 173 (49), 115 (46) and
342 (60) muskrats/yr. The life expectancy of muskrat is about four years, hence
we assume that a, = 0.25/yr and a; = (a, + 0.25Yyr. From these, one could

solve for the variance function in (3.7).
4. Power Law Logistic Models of Growth for a Single Population

4.1 Assumption

Consider now a generalized model with population rates

A (X)= [a,x T @)’ (4.1)
0 otherwise
p(X) = 3, X + b, X**"  forintegers > 1 (4.2)
42 Deterministic model
‘The analogous deterministic model is
X () = @@, —a) X - +b) X" L (A3)

The- model is reviewed in [1] which gives the solution

K
X(t)= - : 4.4
® [1+mexp (-ast)]"”* ( ’ )

where a=(a; —a,),b=(b, +b),K=a/b)"andm=(K/Xp] -1, (45

and where K denotes the asymptotic size, or “carrying capacity”.v The poiht
of inflection for the model occurs. at time t; = [log, (m/s)] / as with population
size .
X(t) =K/ a+9)"” (4.6)
The special case of s=1 in (4.3) gives the well-known Verhulst-Pearl model.

Its classic solution in (4.4)-is the ordinary logistic equation, with point of
inflection at size K/ 2. -

43 Equations for cumulant functions
Consider slightly modifying the birth assumption from (4.1) to'
A(X)=a, X-b X+ Y/
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for all X > 0, which has little effect on most practical applications. The. pde
for the moment generating function of the process defined by (4.2). and (4.7)
is, from (8] : : '

%’I = [ -1a;+E®-1)ay %‘ : (4.8)
s+1
+[(ee-1)(—b,)+(e_9—l)bzl%ﬂM

Differential equations for the cumulant functions may be obtained by
substituting K = log M into (4.8), and expanding using (2.1). Some equations
for k; (t) are :

for s=1; K (D=(@—-bk)) K, - bk, (4.9)

for =2 K =(a—bK}) K, ~b (5 + 3K, k) (4.10)

for — s=3; Kk (0=(a-bK})K; —b (x4 + 4K3K; + 3K + 6K )K2)
(4.11)

Equations for the variance function for some small s are :
for s=1; K, )= (c—dk)) K +(2a~d - 4bk,) K, — 2bk; (4.12)
for  s=2; Ky () =(c—dx]) K, + (2a - 3dk, - 6bKk? — 6bK,) K,
- (d+6bx;) k3 — 2bi, (4.13)
for  s=3; K (0 =(c~dx]) K;+ (2a+6d] +8bic + 3dk,
+24bKK6,) Ky — 4 (dic; + 3bic) + 5bicy) s
"~ (d+8bK,) kg — 2bKs (4.14)

where a=a, -a,, b=b, +b,, c=a, +a,, and d=b, -b,. In principle, one
could derive directly such equations for any cumulant of any s-power model,
but the algebra becomes tedious. We obtain such expressions for higher order
cumulants and for larger s from (4.8) using the symbolic computer software
package Mathematica [14].

4.4 Solutions for cumulant functions

Equations (4.9)-(4.14) suggest, and it is easily proven, that the differential °
equation for the j‘h cumulant function for an s-degree power law logistic model
involves terms up to the (j+ s)™ cumulant. Obviously this fact rules out exact
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solutions to the equations. We propose approximating the cumulant functions
of any specific order, say i, of an s-power law model by solving a system of
up to the first (i+s) cumulant functions with all higher order cumulants set
to 0. The accuracy of these approximate cumulant functionsAdepends clearly .
on the specific parameter values. The mean value functions, K, (t) , have been

very accurate, with a maximum error rate of less than 0.5% over t, in our
limited previous studies with parameter vectors that yield relatively small
population sizes. We expect similar accuracy for the mean functions of larger

. . . A
populations. The approximate vanance function, K, (1), has an error rate of

less than 4% in our previous studies, and research is in progress to investigate
its error rate for larger populations.

4.5 Application to muskrat population dynamics

The populations in four proviuceé, limb, gelderl, overijl and dr, leveled
off to some apparent’ quasi-equilibrium size. The deterministic model in (4.4).
with various fixed, small integer s > 1 was fitted to the data from each of the
latter three provinces, which are adjacent eastern provinces in the Netherlands,
using Scientist [9]. Research is in progress in fitting the mean value functions
of the stochastic model to data. The best fitting curves for the three provinces
has s values ranging from 2 to 5. Figure 2 illustrates the fitted curves with
s=1 and s=2 for two adjacent provinces. -

Table 1. Parameter estimates, with'standard errors, and mean squared errors for power
law logistic model (eq. 4.4) fitted to population data from three provinces.

Province K se a se b MSE x 1078
fors=1:

gelderl  ~ 48669 4104 0.408 0.125 838x107° 727
overijl 17595 601 0.583 0102 331x107° 27
drente 13590 796 0.644 0225 474x107° 62
fors=2: : .
gelderl 46216 2959 0334 0076  1.56x107'0 643
overijl 17388 483 0429, 0066  1.42x 1000 21
drente 13503 695 0483 0163  265x10° 54

Table 1 lists the parameter estimates with their standard errors and the
mean squared error (MSE) from model (4.4) for s=1 and s=2 for each of
the three eastern provinces. In each case, the standard errors are relatively small,
indicating excellent precision. For each province, the model with s=2 had a
better fit, i.e. lower MSE, a lower carrying capacity, K, and a lower net intrinsic
rate, a.
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Figure 2 (a) Logistic models with s =~ 1 fitted to data on muskrat harvests in Overijssel
and Drente
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Overijssel Logisﬁc (s=2)
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For comparative purposes, we assume again a density independent death
rate function with parameters a;=0.25 and b,=0 for each province. This
implies that the birth rate function is density dependent with resulting parameters
a;=a+0.25 and b; =b. The assumed death rate function and the estimated
birth rate functions for three models, (3.2) and (4.4) with s=1 and s=2, are
illustrated in Figure 3 for overijl and’ dr provinces.
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Figure 3.'Assumed death rate and estimated birth rate functions for logistic models with
s=0,1and 2. A. Overijssel B. Drente
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These parameter estimates may be substituted into (4.9)-(4.14) to obtain
approximate mean and variance functions. As an illustration, Figure 4 illustrates
the mean and variance functions for the model with s = 1 and s = 2 for overijl.
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Figure 4. Cumulant functions for logistic model with s = 1 and s=2 for Overijssel
A. Means, B. Variances
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5. Density Independent Models of Growth for Multiple Populations
5.1 Assumptions '

Consider now a multiple population " density-independent model, with
immigration, migration, and assumed birth and death rates :

A (XD =a; X; and p; (X)) = 2, 5.1
5.2 Deterministic model
The deterministic model for k = 2 populations is
X (0=ay, X, + VX, +1, (5.2)
X, = vy X+ 25X, +1, , (5.3)
where v is the assumed migration rate and a,, is the net rate
3 = 3~ 3= D V;i , .4
I}
5.3 Egquations for cumu%lam functions
The pde for the cgf is, from [7] :

IK (8. ~0,+0 IK

X - [(eel—l)a”+(e'°l—1)alz+(e 2 =-1) vyl E
+[(e62—1)a21+(e’93—1)322+(e°l_92—l)vlzla—K
: 06,
2
+3 -1 : (5.5)

i=1
The differentjal equations for the means, Ko (1) and Kk, (1), are identical
to (5.2) and (5.3). The equations for the second order cumulants are,. -

Koo (1) = (@) + 2y +V9)) Kjg + VioKg) + 28),Kp0 + 2V oK + 1, (5.6)

Ky () = =V K10 = VigKoy + Vo 1Koo + (@1 + 220) Ky + Vigkgp  (5.7)

Koy (7= Vaikig+ (@) + gy + Vy3) Koy +2v5yKyy + 2a00K0p +1,  (5.8)
5.4 Solutions for cumulant functions

Explicit solutions for the first and second order cumulants are given in
[11]). We consider for subsequent application only models with one-way
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migration, i.e. with vy, =0, for which the individual differential equations may
be solved recursively.

5.5 Application to muskrat population’ dynamics

Models of the form in (5.2) and (5.3) with migration were fitted to the
data in [7]. With migration, the net birth-rates in adjacent provinces are not
usually significantly different, for example the net rates for overijl, dr and gron
are not ‘significantly different, and the common net rate is estimated to be
0.328/yr. The absence of migratjdn in (3.3) thus tends to underestimate - the
intrinsic birth rate in a donor province and overestimate it in a recipient province.
The models with migration included typically fit the data better [7]).

6. Ordinary Logistic Models of Growth for Multiple Populations
6.1 Assumptions ' -

Consider multiple ordinary logistic populations linked with migration. The
birth and death rate assumptions are : ‘

A = {3 X; - by X} for X; <G/ by) 6.1)
0 otherwise
(X)) = ap X+ b X _ - (6.2)

It is assumed also that the populations are linked by one-way migration
from population 1-to population 2 at rate vy X ’

6.2 Deterministic modelA ‘
The analogous deterministic model for this system is
X, 0 = a;,X;=b, X - (6.3)
X, (1) = Vg, Xy + 250 Xg — by X5 (6.4)
where a,, are given in (5.4)-and by, =b;; +bp

Equation (6.3) is identical in forrh to (3.3), hence it has the logistic solution
in (4.4) with equilibrium value K, = a;,/b,,. Equation (6.4) is a Ricatti equation
{1] with equilibrium value

-

\



JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

6.3 " Equations for cumulant Junctions

We again define a modified BDM process in which the birth rates are
defined as a quadratic function of X, i.e. '

A(X) = 2; X - by X2 (6.6)

The effect of this. change is usually negligible on the first population as
previously observed, but may be substantial on the second population. The pde
for the cgf is :

2 .
9K z (% -1) a+ -1 a, ]
i=1

K
29,

K—
=

2

) iy ’K oK
PE Dt (TE L (3)

8,+0 JK

+ (@ _1) vy, o, 6.7)

Substituting (2.1) and expanding in powers of 8, and 6,, one obtains
the following differential equations for the first and second order cumulants :
Kio = (a1~ biak10) Kjg = byakyy (6.8)
Koi = V21 Kig + (3 = byyko; ) Koy = by Ky (6.9)
Ko = (C1n =1, K 10) Kyo + (22, ~ dy, — by, K10) Ko
=2by, K30 (6.10)
Koz = (C2n = danKoy) Koy + (25, = dyy, — 4by ko)) Koy
+ Vo (g +2Ky;) — 2by, K3 (6.11)
Kyt = (€10 = 2by1K10 + Co = 2b2Koy) Ky + Vop (g0 — K;)
= biakyy —bynky, (6.12)
with a;, and b, as before, with
Cin = aj +a+v;and dy, = by —b,, (6.13)

-

6.4 Solutions for cumulant functions

As proposed in Section 4.4, we recommend solving equations (6.8)—(6.13)
by obtaining the four equations with third order cumulants from Marthematica,
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and then solving the combined system of nine equations with all cumulants
of fourth or higher order set to 0.

6.5 Application to muskral population dynamics

In order to investigate the effect of migration in these density dependent
growth models, consider two populations with identical birth and death rate
functions. As observed in [7], adjacent provinces are likely to have such identical
rate functions. To be specific, we assume that an identical logistic model with -

= 1 holds for both a donor (overijl) and a recipient (dr) province. The assumed
common parameter estimates are the median values in Table 1, namely those
estimated for overijl. If these provinces also have identical starting values, then
in the absence of migration they clearly would also have identical cumulant
functions.

Three levels of migration are investjgated. The first is 'v,, = 0.10, as

suggested by the results in [7]. In the second level, the rate is doubled to
v,; = 0.20; in the third it is halved to v;; = 0.05. To adjust for migration

from the first population, the overall intrinsic death rate, a, = 0.25, is
partitioned into the migration rate, v,;, and a new intrinsic mortality rate,
aj,=a,—-Vvy. The common parameters are ay = a3 = 0.833,

by, = by = 3.31x 107,25, =0.25, and by, = by, = 0, with estimated initial
values X, (0) =X, (0)=340. -

The mean and variance functions for the first population (overijl) were
given in Figure 4. Figure -5 illustrates for the three levels of migration the
comparative mean and variance functions for the second population (dr) and
also the covariance functions. It is clear that the migration effect, even at the
very low levels compared to the birth rate, has a substantial influence on the
cumulant functions of the recipient province.

Consider first the mean value functions. The asymptotic mean value for.
overijl, the donor province with migration, is 17613; whereas the asymptotic
means for the three levels of migratjon for dr, the recipient province, are 18317,
19133, and 20527 for v = 0.05, 0.10, and 0.20 respectively. The three
proportional increases are 0040 0.086 and 0.165.

Though the absolute values of the variances are relatively small, due to
the law of large numbers, there are striking effects of migration in the shape
of the curves. For simplicity, we consider the standard deviation of population
size. The peak standard-deviation for the donor province in Figure 5 is 355.7;
whereas the corresponding peaks for the three levels of migration in the recipient
province are 312.8, 294.7 and 286.7 respectively, for proportional decreases
of 0.121, 0.171 and 0.194. The asymptotic standard deviation for overijl is 86.9,
and the corresponding values. for dr with the three migration levels are 83.7,
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81.1, and 77.0, respectively, which represent decreases. It is interesting that
the lower migration rates which give the smaller mean values also yield the
larger standard deviations. Because the asymptotic variances are small, it follows
that the differences between the carrying capacities and the corresponding
asymptotic values of the equilibrium distributions are also small.

7. Conclusions

Multiple populations linked by migration, called metapopulations, are of
great interest in ecology and are widely studied using various deterministic and
simulation models. This paper demonstrates two facts. Firstly, it shows that
these density-dependent BDM models are also available to investigate the
properties of metapopulations, such as the variances, which are not available
from deterministic models. Secondly, the BDM models are valuable tools for
evaluating pest control strategies which might increase the death rate, decrease
the birth rate, or slow the migration rate. Migration is usually the most difficult
of these to investigate, and this paper establishes the feasibility of using BDM
models for this purpose. -

This paper illustrates only one data set, and should be regarded as a
progress report. Clearly many other data sets should be studied. For the present
data, the derived variances are too low, which is due in part to a number of
simplifying assumptions. The initial assumptions in Section 2 relating to unit
changes and implicitly to exponentially distributed time intervals between events
are not realistic biologically and in aggregate they damped the variance
drastically. The model was generalized in [6), which yields much larger
variances but a corresponding more difficult analysis. Also, we assumed in
Sections 4 and 6 that all of the density-dependence is attributable to the birth
rate function. This assumption also reduces the variances, and could be easily
modified. Another major implicit assumption is the lack of so-called
environmental stochasticity in the data. This additional component could be

. readily incorporated by adding some new constant to the differential equations

for the variances, but is not pursued at present.

Research is also in progress to ascertain more precisely the accuracy of
the cumulant approximations for the second population, and to develop
approximating bivariate distributions by matching low-order cumulants, as in
[13]. Though much work remains to develop these models fully, much has-also
been accomplished. In particular, this paper demonstrates the feasibility of using
density-dependent BDM models for describing the spread of muskrats in the
Netherlands, and in general it establishes the promise of these BDM models
for successful use with similar data sets on spatial-temporal spread. '
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